Performance analysis of integrated biomass gasification fuel cell (BGFC) and biomass gasification combined cycle (BGCC) systems

نویسندگان

  • Jhuma Sadhukhan
  • Yingru Zhao
  • Nilay Shah
  • Nigel P Brandon
چکیده

Biomass gasification processes are more commonly integrated to gas turbine based combined heat and power (CHP) generation systems. However, efficiency can be greatly enhanced by the use of more advanced power generation technology such as solid oxide fuel cells (SOFC). The key objective of this work is to develop systematic site-wide process integration strategies, based on detailed process simulation in Aspen Plus, in view to improve heat recovery including waste heat, energy efficiency and cleaner operation, of biomass gasification fuel cell (BGFC) systems. The BGFC system considers integration of the exhaust gas as a source of steam and unreacted fuel from the SOFC to the steam gasifier, utilising biomass volatalised gases and tars, which is separately carried out from the combustion of the remaining char of the biomass in the presence of depleted air from the SOFC. The high grade process heat is utilised into direct heating of the process streams, e.g. heating of the syngas feed to the SOFC after cooling, condensation and ultra-cleaning with the Rectisol  process, using the hot product gas from the steam gasifier and heating of air to the SOFC using exhaust gas from the char combustor. The medium to low grade process heat is extracted into excess steam and hot water generation from the BGFC site. This study presents a comprehensive comparison of energetic and emission performances between BGFC and biomass gasification combined cycle (BGCC) systems, based on a 4 th generation biomass waste resource, straws. The former integrated system provides as much as twice the power, than the latter. Furthermore, the performance of the integrated BGFC system is thoroughly analysed for a range of power generations, ~100-997 kW. Increasing power generation from a BGFC system decreases its power generation efficiency (69-63%), while increasing CHP generation efficiency (80-85%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Process Analysis of a Biomass Gasifier-Molten Carbonate Fuel Cell-Gas Turbine-Steam Turbine Cycle as a Green Hybrid Power Generator

Fuel cell-based hybrid cycles that include conventional power generators have been created to modify energy performance and output power. In the present paper, integrated biomass gasification (IBG)-molten carbonate fuel cell (MCFC)-gas turbine (GT) and steam turbine (ST) combined power cycle is introduced as an innovative technique in terms of sustainable energy. In addition, biomass gasificati...

متن کامل

Energy Price Analysis of a Biomass Gasification-Solid Oxide Fuel Cell-Gas Turbine Power Plant

In this study, effect of energy price on the development of a biomass gasification-solid oxide fuel cell-gas turbine hybrid power plant has been considered. Although, these hybrid systems have been studied based on sustainable approaches, economic aspects, specifically conventional energy prices, which are the principal bottleneck for the development of these new power generators, have attracte...

متن کامل

Xergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system

Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...

متن کامل

On a Numerical Model for Gasification of Biomass Materials: An Alternative Method to Combustion

In this paper, a thermochemical equilibrium model is used to predict the performance of a downdraft biomass gasifier. Numerical results are shown to be in good agreement with those of the experiments. Different biomass materials are tested using the model, and forest residual is shown to be the most energetic one. For this material, the gasification temperature, syngas composition and calorific...

متن کامل

Evaluation of an Integrated Biomass Gasification/fuel Cell Power Plant

The Chariton Valley Biomass Power Project, sponsored by the U. S. Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012